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Instabilities of the resonance attractor for spiral waves in an excitable medium
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During an experimental study of the resonance attractor for spiral waves in the light-sensitive Belousov-
Zhabotinsky reaction, strong deviations of the attractor trajectories from circular orbits are observed if the time
delay in the feedback loop becomes relatively long. A theory is developed that reduces the spiral wave
dynamics under a long-delayed control to a higher order iterative map. Then the observed deviations are
explained to be a result of instabilities appearing due to the Neimark bifurcation of the map. The theoretical
predictions are in good agreement with the experimental data.
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I. INTRODUCTION

Spiral waves rotating in an excitable medium are an
portant and characteristic example of dynamical spatiot
poral patterns. They have been observed in many nonlin
distributed systems as vortices of electrical activity in c
diac, tissue@1#, CO oxidation fronts on platinum surface
@2#, or as chemical waves in the Belousov-Zhabotinsky~BZ!
reaction @3,4#. Their dynamic behavior becomes especia
rich and diverse when are subjected to parametric mod
tion of the excitability. This has been amply demonstrated
experiments with the light-sensitive BZ reaction@5–11#. In
particular, the phenomenon of resonant drift attracts no
growing interest, because it provides an efficient way to c
trol the dynamics of a spiral wave. Such a control is imp
tant for many applications, e.g., for the defibrillation of ca
diac tissue@12–14#.

The resonance attractor appears in excitable systems
der a feedback control, when a pulsatory modulation of
excitability is synchronized with the passage of the wa
pulses through a measuring point that can be arbitrarily c
sen in the medium@3#. This feedback forcing results in
resonant drift of the spiral core around the measuring po
Recent experimental studies@11# reveal a complex structur
of the attractor in that circular orbits of different sizes exi
which depend on the sign and the time delay in the feedb
loop. The theory of the resonance attractor elaborated
cently @15#, reduces the dynamics of a spiral wave und
one-channel feedback to a low dimensional iterative map
predicts the existence of circular orbits and quantitativ
describes their sizes.

However, the available experimental data@11# demon-
strate pronounced deviations of the attractor orbits from
circular pathways, if the time delay is sufficiently long or th
attractor size becomes sufficiently large. The reason for s
deviations remains unknown, since they cannot be expla
in the framework of the existing theory@15# that applies only
to the case when the time delayt is smaller than the rotation
periodT0 .

In this work we perform a systematic experimental stu
of resonance attractors under a long time delay in the fe
back loop. A modified theory is developed to describe
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dynamics of spiral waves under such a delayed control.
existence and the stability of the attractor orbits are analyz
Finally, the obtained theoretical estimates are compared w
the experimental data.

II. EXPERIMENTAL OBSERVATIONS OF THE
RESONANCE ATTRACTOR

The experimental setup, in extension of that used in
previous studies@8,10,11#, includes a petri dish with a thin
(0.3360.02 mm) gel layer. The light-sensitive Ru (bpy)3

21

catalyst is immobilized in the gel at a concentration of 4
mM @16#. The BZ solution without catalyst is poured on to
of the gel. After several minutes an equilibrium between l
uid and gel is established and the following concentratio
are reached: 0.2-M NaBrO3, 0.17-M malonic acid, 0.39-M
H2SO4, and 0.09-M NaBr. The experiments are carried o
at a temperature of 2261 °C.

The petri dish is illuminated from below by a video pro
jector ~Panasonic PT I 555E! controlled by a computer via a
frame grabber~Data Translation, DT 2851!. The illuminating
light is filtered with a bandpass filter~BC6, 310–530 nm!.
The pictures of the oxidation waves appearing in the
layer are observed in transmitted light detected by a C
camera~Hamamatsu H 3077! and digitized online for imme-
diate processing by the computer. In parallel, the ima
from the camera are stored on a video recorder~Sony EVT
301!.

A single spiral wave, which constitutes the initial cond
tion for all the experiments, is created in the center of
dish by breaking a wave front with a cold intense light sp
@11#. The tip of the spiral wave is defined as the intersect
of contour lines (0.63amplitude) extracted from two con
secutive frames of the digitized movie~time step 3.12 s!. Its
motion is followed automatically by the computer@9#.

For the given background light intensity (I bg
50.12 mW/cm2) the tip moves on a circle with a diamete
about 0.39 mm. The rotation period isT0'52 s, the spiral
wave pitch isl0'1.98 mm.

This rigid rotation of the spiral wave can be disturb
when applying a sequence of short light pulses. Each p
induces a shift of the spiral wave core. The single shifts
©2002 The American Physical Society06-1
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accumulated with time and cause a drift of the core@8,11#. In
this work the light pulses~duration, 5 s! are created directly
at the moment, when the wave front passes through a pr
lected measuring point, or after some time delayt. Depend-
ing on the sign of the pulse the total illumination intensity
increased~positive pulse! or decreased~negative pulse! with
respect to the background level.

In Fig. 1, a number of trajectories of a spiral wave tip a
shown that represent experimental observations perfor
with different time delays in the feedback loop. For a
value oft several possible values of the orbit radiusRs exist.
The radius depends on the pulse sign~cf. values given by
diamonds and circles!. However, even for a fixed pulse sig
~say, a negative one! orbits with different radii were found
depending on the initial distance between the spiral core
the measuring point. In order to reach an orbit with a lar
radius, this distance should be longer and lie within the c
responding basin of attraction. An increase oft results in a
shrinking of the orbit radius, as reported earlier@9,11,15#.

In the right upper corner of the Fig. 1 one can see stro
deviations from a circular pathway. Small deviations of th
kind have been already noticed in the experiments with
snail-shaped drift@11#. The results shown in Fig. 1 demon
strate that these deviations are reproducible and can be r
pronounced. They appear if the time delay in the feedb
loop and/or the orbit radius become sufficiently large.

III. KINEMATICAL MODEL OF THE SPIRAL CORE
DYNAMICS

We develop a simplified description of the spiral wa
dynamics under one-channel feedback assuming that the
perturbed spiral rotates rigidly around a circular core with
constant angular velocityv0 . The shape of its front can b
specified in a polar coordinate system~U, r! with origin at
the core center by a functionU5U(r ), whereU50 corre-
sponds to the spiral wave tip. An example of this functi
obtained in our experiments is shown in Fig. 2.

FIG. 1. Trajectories of the spiral wave tip under feedback c
trol with time delayt. The measured radius of the resonance attr
tor Rs is shown by diamonds~circles! for a negative~positive! sign
of the light pulse with amplitudeA50.08 mW/cm2. Strong devia-
tions from a circular shape appear in the right upper corner of
(t,Rs) plane.
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Application of the pulse induces a displacement of t
core center, as schematically shown in Fig. 3. In order
describe the displacement of the spiral core, we introd
another polar coordinate system~w, R! centered at the mea
suring point~see Fig. 3!. The distance to the core centerRi
and the polar anglew i will specify the location of the core
just before the pulsei is applied. In addition, anglea i deter-
mines the location of the spiral tip at the same instant on
circular pathway around the core center. This angle
counted from the line connecting the core center and
measuring point. The induced displacement occurs in a

-
-

e

FIG. 2. FunctionQ(r ) specifying the experimentally observe
shape of the spiral wave front. Radiusr q corresponds to the shortes
distance between the core center and the contour line of the s
wave attained at the spiral wave tip. Radiusr Q specifies the maxi-
mum of Q(r ) attained for the radius-vector tangent to the conto
line. The dashed line represents the asymptotic behavior ofQ(r )
for large r.

FIG. 3. Shift of the spiral wave core due to one pulse in
periodic sequence. The contour line~dotted! of a spiral wave is
shown at the instant, when its front passes through the measu
point ~cross!. The thin looped line represents a part of the wave
trajectory observed witht5T0 . Thick segments indicate applica
tion of light pulses. Locations of the core center just before thei
21)th andi th pulse are shown as full circles. The core center a
the i th pulse is shown as an open circle. Scale bar: 1 mm.~For
details, see text.!
6-2
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rection given by the angleg i measured with respect to th
same line. The angleg i depends, of course, on the orient
tion of the rotating spiral wave given by the anglea i and can
be expressed as

g i5a i1c, ~1!

where the anglec is a constant that depends on the dist
bance applied to the system@11#.

If the absolute value of the induced displacement ish, the
next location of the core is given by@15#

Ri 11
2 5Ri

21h222Rih cos~g i !, ~2!

w i 115w i2arcsin@~h/Ri 11!sin~g i !#. ~3!

These equations are a direct consequence of the co
theorem-applied to the triangle with sidesRi , h, Ri 11 .

If a pulse is applied just at the moment when the sp
front passes through the measuring point, the equationa i5
2U(Ri) is valid @15# that follows from the definition of the
functionU(Ri). In the more general case of an arbitrary tim
delay the expression fora i should be written as

a i52U~Ri 2k!1v0t2kda2~w i2w i 2k!. ~4!

Herek5@t/T0# is the largest integer smaller thant/T0 and
is equal to the number of full rotations made by the sp
wave during the delay time. This integer is as well the nu
ber of light pulses that have been applied to the system
ing the time intervalt. For k50, Eq. ~4! is identical to the
expression for shortt @15#. The more complicated situatio
for k51 is illustrated in Fig. 3~for the particular choicet
5T0!. During the trajectory loop numbered (i 21) the wave
front passes through the measuring point at the mom
when the anglea is equal to2U(Ri 21). The new light pulse
is not immediately generated, but with a time delayt, during
which the spiral continues to rotate with the angular veloc
v0 . While the anglea increases to2U(Ri 21)1v0t, an
intermediate pulse is applied to the medium, as can be s
in Fig. 3. Generally speaking, the light pulses applied dur
the time intervalt can change the rotation velocityv0 of the
unperturbed spiral. The effect of this perturbation has to
included in our consideration as a correction termda ~more
generallykda, if kÞ1!. The last term in Eq.~4! appears due
to the fact, that the anglea is counted from the radial direc
tion w i 21 for the (i 21)th loop, while for thei th loop the
angle is counted fromw i .

It is not difficult to generalize the above considerati
carried out fork51 in order to analyze the case of an arb
trary k. This generalization leads to Eq.~4!.

The valuesh, c, da, and functionU(r ) can be measured
experimentally. After this the system~1!–~4! is complete and
describes the dynamics of the spiral core.

In order to simplify the analysis of system~1!–~4! let us
assume that an applied light pulse changes the average
tion velocity only by a small amountda!1. Moreover, Fig.
3 shows thatw i 212w i'h/Ri . Usually the ratioh/Ri is very
small, e.g., for all orbits shown in Fig. 1,h!Ri holds. Hence
we can neglect the two last terms in Eq.~4! and write
02620
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a i5v0t2U~Ri 2k!. ~5!

Now the map~1!, ~2!, ~5! describing the dynamics ofRi can
be considered independently of Eq.~3! that specifiesw i .
This map has a number of equilibrium pointsRs that do not
depend on the valuek and should satisfy the following equa
tion:

h

2Rs
5cosgs . ~6!

Each equilibrium point corresponds to a circular orbit of r
diusRs , if the whole map~1!–~3!, ~5! is considered, becaus
the anglew i grows permanently with a constant velocit
determined by Eq.~3!. Substituting Eqs.~1! and~5! into Eq.
~6!, the relation between the radiusRs of the attractor orbit
and the time delayt can be expressed as@11,15#

t

T0
5

U~Rs!2arccos@h/~2Rs!#2c

2p
1m, ~7!

or

t

T0
5

U~Rs!1arccos@h/~2Rs!#2c

2p
1m, ~8!

with m denoting a positive integer.
These expressions provide a quantitative estimate of

attractor radiusRs as a function of the delayt in the feed-
back loop, if the parametersh, c, and theU(r ) are deter-
mined experimentally@11,15#. In order to clarify the main
features of the functionRs(t) let us take into account tha
h/(2Rs)!1 and assume an Archimedian shape of the sp

U~r !5U022pr /l0 , ~9!

which is a linear approximation of the functionU(r ) for
large r ~see Fig. 2!. Then Eq.~7! can be written as

Rs

l0
5

R00

l0
2

t

T0
1m, ~10!

whereR00 is the attractor radius corresponding tot50 and
m50 in Eq. ~7!. Under the same assumptions Eq.~8! reads

Rs

l0
5

R00

l0
2

t

T0
10.51m. ~11!

Thus, for a fixedm the resonance attractorRs is a decreasing
function of the time delayt as shown in Fig. 4. On the othe
hand, for each value oft there are several possible attract
radii corresponding to differentm. These results are both i
agreement with the experimental observations~cf. Fig. 1!. It
is important to point out that, if dimensionless coordina
(t/T0 ,Rs /l0) are used, the entire structure of the resona
attractor shown in Fig. 4 is determined by only one para
eterR00/l0 . This parameter depends on the characteristich
andc of the induced shift and can be estimated from Eq.~7!
or measured directly.
6-3
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IV. LINEAR STABILITY ANALYSIS

The stability of the orbits specified by Eqs.~7! and~8! is
determined by the evolution of a small deviationdRi near an
equilibrium point, which obeys the following equation d
rived from the map~1!, ~2!, ~5!,

FIG. 4. Radius of the resonance attractorRs vs time delayt in
the feedback loop. Solid and dashed lines are computed from
Eqs.~10! and~11!, respectively, withR00/l050.6. Arrows indicate
directions of evolution ofRi within the basins of attracting orbit
~solid! separated by unstable orbits~dashed!. Within the basin of
attractionk5@tS /T0# remains constant.
02620
dRi 112~12m/2!dRi1HA12m/4dRi 2k50, ~12!

where

m5
h2

Rs
2 . ~13!

H is a dimensionless shift written as

H52h
dU

dr U
r 5Rs

, ~14!

for orbits described by Eq.~7! and as

H5h
dU

dr U
r 5Rs

, ~15!

for those described by Eq.~8!. Under the assumptionm!1,
the characteristic equation for the eigenvalues of Eq.~12!
reads

lk112lk1H50. ~16!

An equilibrium point of the discrete map~1!, ~2!, ~5! is
stable under the conditionulu,1. Generally speaking, the
characteristic equation~16! has k11 roots, which can be
found numerically for a givenH. Figure 5 shows two ex-
amples of the displacement of the roots on the complex pl
computed as a function ofH. For H50 one root is always
located atl51, all others lie atl50 @Fig. 5~a! and 5~b!#.
With growing H the roots move through the complex plan
and cross the unit circle, which corresponds to the Neim

he
e
FIG. 5. Absolute values and locations of th
roots of characteristic equation~16! on the com-
plex plane vs the dimensionless shiftH computed
numerically fork51 @~a! and ~b!# and for k54
@~c! and ~d!#.
6-4
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INSTABILITIES OF THE RESONANCE ATTRACTOR . . . PHYSICAL REVIEW E 65 026206
bifurcation@17#. A sequence of Neimark bifurcations can b
observed only in the map withk>3 @cf. Figs. 5~c! and 5~d!#,
since two complex conjugated roots are involved in each
such a bifurcation.

Let us determine the critical valuesHc of the dimension-
less shiftH corresponding to the Neimark bifurcation. Sin
at the bifurcation pointulu51 is valid, we can write

l5cosb1 i sinb, ~17!

where the valueb is an unknown. Then Eq.~16! can be
expressed as a system of two equations forHc andb

sin~k11!b2sinkb50, ~18!

cos~k11!b2coskb1Hc50, ~19!

which can be easily transformed to

2 cos
2k11

2
b sin

b

2
50, ~20!

22 sin
2k11

2
b sin

b

2
1Hc50. ~21!

One possible solution of this system is the case sinb/250,

Hc50; b52pm. ~22!

Positive values ofHc correspond to the case cos@(2k
11)/2#50. Substituting this condition into Eq.~21! yields

Hc52 sinFp~4l 11!

2~2k11!G , b5
p~4l 11!

2k11
, ~23!

wherel 50,1, . . . is anintegerl<k. SinceHc is an increas-
ing function of l, the minimal value ofHc found for l 50
describes the first Neimark bifurcation of the discrete m
~1!, ~2!, ~5!. The critical values obtained forl .0 specify
higher Neimark or flip bifurcations.

Note that for all orbits shown in Fig. 1 the attractor radi
Rs is larger thanr Q . It follows from Fig. 2 that at such large
distances from the core the derivativedU/dr is negative.
Consequently, for orbits described by Eq.~8! the dimension-
less shift H is negative, as follows from Eq.~15! with
dU/dr,0. Analysis of Eq.~16! shows that atH50 a cyclic
fold bifurcation takes place and the attractor orbit becom
unstable forH,0. The unstable orbits play the role of th
separatrices restricting basins of attraction for orbits
scribed by Eq.~7!. Figure 4 illustrates this statement for th
case of an Archimedian shape of the spiral wave. Arrows
Fig. 4 show directions of variation ofRi for arbitrarily cho-
sen initial distance between the measuring point and the
ral core. These directions corresponds to the performed
bility analysis of the map~1!, ~2!, ~5!, describing evolution
of Ri under a fixedt. Dashed lines indicates unstable orb
described in this case by Eq.~11!. Solid lines specify attract-
ing orbits.
02620
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These orbits@specified by Eqs.~7! or ~10!# are stable, ifH
does not exceed a critical valueHc corresponding to the firs
Neimark bifurcation. The critical value depends on the ord
k of the map

Hc52 sinF p

2~2k11!G , ~24!

as follows from Eq.~20! with l 50. The corresponding sta
bility diagram ~Fig. 6! clearly shows that for an arbitrarily
chosenH the stability of the equilibrium point is broken, i
the value of k becomes larger than a critical valuek
.kc(H). Hence the attractor orbit cannot be stable, if t
time delayt exceeds a critical valuet.r c5kcT0 , even if
the shift H.0 is arbitrarily small. The boundaries withl
51 andl 52 shown in Fig. 7 correspond to higher bifurc
tions, which occur in the map~1!, ~2!, ~5! for larger values of
H and/ork.

FIG. 6. Stability diagram for the map~1!, ~2!, ~5!. Solids show
the bifurcation boundaries on the~k,H! plane computed from Eq
~23! with l 50, 1, 2. Arrows illustrate the critical valuekc for a
given dimensionless shiftH50.38.

FIG. 7. Trajectories of a spiral core~solid! computed for the
map ~1!–~3!, ~5! with c50.157 andQ(r ) corresponding to an
Archimedian spiral~9! with l0550 and Q050.64. ~a! t50, h
53, ~b! t50, h54, ~c! t50, h55, ~d! t5T0 , h53, ~e! t
52T0 , h53, ~f! t53T0 , h53. The dashed circle comprises th
stability domain of radiusRc calculated from Eq.~32! with
R00/l050.6. Scale bar: 200.
6-5



de

i
.
e

ct
ilit

t
th

e

is
l

c-
nc

la

-

-
ee

r

t
the

n

in
1.

d

ap
sed
al

d-
ter
ck-

-
t

u-

the

or

ZYKOV, KHEOWAN, RANGSIMAN, AND MÜLLER PHYSICAL REVIEW E 65 026206
V. EFFECT OF THE ATTRACTOR SIZE

As a consequence of the Neimark bifurcation periodic
viations from the circular orbit can be expected ift.tc . In
fact, such deviations are observed in the experiments w
substantial delays in the control loop, as presented in Fig
An important finding here is that the critical value of the tim
delay inducing this bifurcation decreases, when the attra
radiusRs grows. Indeed, under a negative pulse an instab
is observed fort574 s and Rs52.0 mm, while for Rs
52.8 mm it appears already att553 s. In order to explain
this fact, note that, if a spiral core is located at a distanceRs
from the measuring point, it takes sometime for a wave
travel to this distance. This time is a natural property of
spatially distributed system under consideration and
equivalent, in some sense, to a time delayt artificially intro-
duced in the feedback loop.

Thus we have to take into consideration a ‘‘total tim
delay’’ tS that depends on both the time delayt and the
radius Rs of the attractor. A natural way to construct th
dependence is to use the functionU(r ) describing the spira
shape~Fig. 2!

tS5t2U~Rs!/v01t0 . ~25!

The term2U(Rs)/v0 specifies the time interval that is ne
essary for a spiral front to reach a point located at dista
Rs from the spiral core. The integerk, which determines the
order of the map~1!–~4!, should be defined now ask
5@tS /T0 #.

The unknown constantt0 in Eq. ~25! can be determined
from the following consideration. Note that there is a re
tionship ~7! between the attractor radiusRs and the time
delay t. Substituting Eq.~7! into Eq. ~25! and taking into
account thath/(2Rs)!1 yields

tS5mT02
p/21c

v0
1t0 . ~26!

Thus, the total time delaytS remains constant for all attrac
tors described by Eq.~7! with a fixed m. Similarly, tS re-
mains constant on a separatrix~8! between the two neighbor
ing attractors. For instance, at the separatrix betw
attractors withm50 andm51 we get

tS5
p/22c

v0
1t0 . ~27!

At the separatrix the total delay timetS should be equal to
T0 , since then it will separate two regions withk50 andk
51. This condition is fulfilled if

t0

T0
512

p/22c

2p
50.51

U~R00!

2p
. ~28!

Finally, expression~25! determining the total time delay fo
an arbitrary spiral shapeU(r ) is written as
02620
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tS5t2
U~Rs!

v0
1

U~R00!

v0
10.5T0 . ~29!

In the special case of an Archimedian spiral~9!, this defi-
nition becomes particularly simple,

tS

T0
5

t

T0
1

Rs

l0
2

R00

l0
10.5. ~30!

The values ofk5@tS /T0# computed with Eq.~30! are indi-
cated on the (t,Rs) plane of Fig. 4.k remains constan
within a basin of attraction and jumps by 1 when crossing
separatrices. Hence, the critical valueHc , determined from
the stability condition~24! is the same within a given basi
of attraction, while particular values oft andRs can be dif-
ferent.

On the other hand, in accordance with the definition~30!,
the critical time delaytc depends on the attractor radius,
agreement with the experimental observation in Fig.
Within a basin of attraction, wheretS /T05kc ,tc is ex-
pressed as

tc

T0
5kc2

Rs

l0
1

R00

l0
20.5. ~31!

Similarly, the critical sizeRc of the attractor should depen
on the time delayt and can be specified as

Rc

l0
5kc2

t

T0
1

R00

l0
20.5. ~32!

These expressions fortc andRc are illustrated in Fig. 7,
where the trajectories of the spiral core center for the m
~1!–~3!, ~5! are computed. For these computations we u
T056.9, l0550, c50.157, and assumed that the spir
shape is Archimedian, hencedU/dr522p/l0520.126.

Figure 7~a! shows four different trajectories correspon
ing to different initial conditions. In all cases the core cen
is rotating around the measuring point in the counterclo
wise direction. The orbits closest to the measuring point~lo-
cated at the symmetry center! started atR05R00 and w0
50. The other orbits started atw050 andR05R001nl0 ,
where the integern is the number of the orbit counted from
the smallest one. These trajectories are computed fort50,
while the total delay timetS should be computed in accor
dance with Eq.~30! and will be proportional to the orbi
number n, tS5(n10.5)T0 . Consequently, the value ofk
5@tS /T0# is simply equal to the orbit number. The comp
tations were performed withh53 (H50.38). In accordance
with Eq. ~24! one expects for this value ofH that orbits with
k>4 are unstable~see also Fig. 6!. The four trajectories
shown in Fig. 7~a! correspond to the valuesk50,1,2,3 and
are stable. Thus, there is a stability domain centered at
measuring point. The dashed curve in Fig. 7~a! shows the
boundary of this domain with radiusRc calculated from Eq.
~32! with R0050.6. Figures 7~b! and 7~c! shows the trajec-
tories computed for the same initial conditions, but f
6-6
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H50.5 andH50.63, respectively. In the first casekc53 and
in the second onekc52. The size of the stability domainRc
becomes progressively smaller. The orbit withk53 loses its
stability first @Fig. 7~b!#, and subsequently the two orbi
with k53 andk52 become unstable@Fig. 7~c!#.

Schemes~d!–~f! of Fig. 7 illustrate the effect of the time
delayt on the orbit stability. All corresponding computation
were performed for fixedH50.38. If t5T0 , the stability
domain computed with Eq.~32! is so small, that the orbi
with k53 becomes unstable@Fig. 7~d!#. Further growth oft
results in a destabilization of the orbits withk52 @Fig. 7~e!#
andk51 @Fig. 7~f!#.

This shows that computations with the discrete map~1!–
~3!, ~5! are in good agreement with the analytical estima
~24! and ~32!. These computations illustrate also that t
attractor of larger size becomes unstable for shorter time
lay in qualitative agreement with the experimental d
shown in Fig. 1.

VI. EXPERIMENTAL STUDY OF THE STABILITY
BOUNDARY

An experimental study has been performed with the g
to allow a direct comparison between the theoretical pre
tions and the measurements. In Fig. 8 a number of different
trajectories are shown that correspond to the experim
carried out with different time delayt and at different inten-
sities of the light pulse. The increase of pulse intensity
sults in a larger shifth specified as the ordinate of Fig. 8. A
a qualitative result in this (t,h) coordinate system one see
that the attractor trajectory becomes unstable, ift and/orh
are sufficiently large. To perform a quantitative comparis
with the model results, the boundary of the Neimark bif
cation is added to Fig. 8~cf. Fig. 6!. Here the critical values
of the time delaytc are computed using Eq.~31! with Rs
5R0010.5l0 yielding

FIG. 8. Trajectories of the spiral tip observed for different tim
delay t and shifth induced by light pulses of different intensitie
The shifts marked by long bars on theh axis correspond to the
following pulse amplitudesA: 20.2, 20.4, 20.6, 20.8 W/m2 with
pulse duration 5 s~from bottom to top!, andA520.8 W/m2 with
pulse duration 6 s for the upper bar. The boundary of the Neima
bifurcation computed according to Eq.~33! is shown as a solid line
02620
s

e-
a

l
-

ts

-

n
-

tc

T0
5kc21. ~33!

The critical values ofh are computed using Eqs.~24! and
~14! with dU/dr522p/l0523.3 mm21, which corre-
sponds to the observed shape of the spiral front shown
Fig. 2.

The theoretically determined boundary is in good quan
tative agreement with the experimental observation of sta
and unstable attractor orbits. Indeed, all stable trajectorie
below the instability boundary. For several experimen
however, an instability appeared earlier, i.e., below the th
retically predicted bifurcation line. This indicates that o
model is an approximation~a good one! derived under sev-
eral simplifying assumptions and cannot be absolute.

VII. CONCLUSION

In summary, the systematic study of the spiral wave d
namics under a one-channel feedback control demonstr
an unexpectedly rich variety of attractor trajectories obser
for a long time delay. A modified theory of the spiral co
dynamics has been developed that reduces the observe
havior to an iterative map, the order of which depends on
time delay. In the framework of this model the observ
deviations from the circular shape of core trajectories
found to be a consequence of the Neimark bifurcation
linear stability analysis yields an analytical expression
the instability boundaries. The main qualitative result of t
study is that for a given intensity of the light pulse the s
bility of the resonance attractor is determined by the to
delay timetS that depends on the time delayt in the feed-
back loop and on the attractor sizeRs @see definition~29!#.
The resonance attractor becomes unstable, iftS /T0 exceeds
a critical valuekc ~e.g., see Figs. 6 and 7!. These model
predictions are in quantitative agreement with both num
cal computations of the map and with experimental obser
tions as shown in Fig. 8.

Spiral wave dynamics under a long-delayed control c
stitutes as a broad and prospective field for both theoret
and experimental studies. From a theoretical point of vi
the resonance attractor represents a natural example of a
linear dynamical system with multiple steady states an
cascade of bifurcations. Having in mind such an import
application as the defibrillation of cardiac tissue, an inve
gation of the basic properties of the long-delayed contro
spiral waves remains a most interesting challenge for fut
work.
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