PHYSICAL REVIEW E, VOLUME 65, 026206
Instabilities of the resonance attractor for spiral waves in an excitable medium
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During an experimental study of the resonance attractor for spiral waves in the light-sensitive Belousov-
Zhabotinsky reaction, strong deviations of the attractor trajectories from circular orbits are observed if the time
delay in the feedback loop becomes relatively long. A theory is developed that reduces the spiral wave
dynamics under a long-delayed control to a higher order iterative map. Then the observed deviations are
explained to be a result of instabilities appearing due to the Neimark bifurcation of the map. The theoretical
predictions are in good agreement with the experimental data.
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[. INTRODUCTION dynamics of spiral waves under such a delayed control. The
existence and the stability of the attractor orbits are analyzed.
Spiral waves rotating in an excitable medium are an im-Finally, the obtained theoretical estimates are compared with
portant and characteristic example of dynamical spatiotemthe experimental data.
poral patterns. They have been observed in many nonlinear
distributed systems as vortices of electrical activity in car- Il. EXPERIMENTAL OBSERVATIONS OF THE
diac, tissue[1], CO oxidation fronts on platinum surfaces RESONANCE ATTRACTOR
[2], or as chemical waves in the Belousov-Zhaboting&¥)
reaction[3,4]. Their dynamic behavior becomes especially ~The experimental setup, in extension of that used in our
rich and diverse when are subjected to parametric moduld?revious studie$8,10,11, includes a petri dish with a thin
tion of the excitability. This has been amply demonstrated in(0.33+0.02 mm) gel layer. The light-sensitive Ru (bgy)
experiments with the light-sensitive BZ reactipf-11]. In  catalyst is immobilized in the gel at a concentration of 4.2
particular, the phenomenon of resonant drift attracts now &M [16]. The BZ solution without catalyst is poured on top
growing interest, because it provides an efficient way to conof the gel. After several minutes an equilibrium between lig-
trol the dynamics of a spiral wave. Such a control is impor-uid and gel is established and the following concentrations
tant for many applications, e.g., for the defibrillation of car- are reached: 0.2-M NaBrQ 0.17-M malonic acid, 0.39-M
diac tissug12-14. H,SQO,, and 0.09-M NaBr. The experiments are carried out
The resonance attractor appears in excitable systems uat a temperature of 221 °C.
der a feedback control, when a pulsatory modulation of the The petri dish is illuminated from below by a video pro-
excitability is synchronized with the passage of the waveector (Panasonic PT | 555Econtrolled by a computer via a
pulses through a measuring point that can be arbitrarily choframe grabbefData Translation, DT 2851The illuminating
sen in the mediun3]. This feedback forcing results in a light is filtered with a bandpass filtdBC6, 310-530 nm
resonant drift of the spiral core around the measuring pointThe pictures of the oxidation waves appearing in the gel
Recent experimental studigl] reveal a complex structure layer are observed in transmitted light detected by a CCI
of the attractor in that circular orbits of different sizes exist,cameralHamamatsu H 3077and digitized online for imme-
which depend on the sign and the time delay in the feedbac#iate processing by the computer. In parallel, the images
loop. The theory of the resonance attractor elaborated rérom the camera are stored on a video recof@&my EVT
cently [15], reduces the dynamics of a spiral wave under301).
one-channel feedback to a low dimensional iterative map. It A single spiral wave, which constitutes the initial condi-
predicts the existence of circular orbits and quantitativelytion for all the experiments, is created in the center of the
describes their sizes. dish by breaking a wave front with a cold intense light spot
However, the available experimental ddtil] demon- [11]. The tip of the spiral wave is defined as the intersection
strate pronounced deviations of the attractor orbits from the@f contour lines (0.& amplitude) extracted from two con-
circular pathways, if the time delay is sufficiently long or the secutive frames of the digitized movigme step 3.12)s Its
attractor size becomes sufficiently large. The reason for sucimotion is followed automatically by the compute].
deviations remains unknown, since they cannot be explained For the given background light intensity I
in the framework of the existing theof¢5] that applies only  =0.12 mW/cn3) the tip moves on a circle with a diameter
to the case when the time delays smaller than the rotation about 0.39 mm. The rotation period T§~52 s, the spiral
periodTy. wave pitch ishg=~1.98 mm.
In this work we perform a systematic experimental study This rigid rotation of the spiral wave can be disturbed
of resonance attractors under a long time delay in the feedvhen applying a sequence of short light pulses. Each pulse
back loop. A modified theory is developed to describe thanduces a shift of the spiral wave core. The single shifts are
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FIG. 1. Trajectories of the spiral wave tip under feedback con-
trol with time delayr. The measured radius of the resonance attrac- FIG. 2. Function®(r) specifying the experimentally observed
tor Ry is shown by diamondeircles for a negative(positive) sign  Shape of the spiral wave front. Radiyscorresponds to the shortest
of the light pulse with amplitudé=0.08 mW/cni. Strong devia-  distance between the core center and the contour line of the spiral

tions from a circular shape appear in the right upper corner of thavave attained at the spiral wave tip. Radisspecifies the maxi-
(7,Ry) plane. mum of O(r) attained for the radius-vector tangent to the contour

line. The dashed line represents the asymptotic behavi® (o)
accumulated with time and cause a drift of the d@d1]. In ~ for larger.
this work the light pulse¢duration, 5 $ are created directly
at the moment, when the wave front passes through a prese- Application of the pulse induces a displacement of the
lected measuring point, or after some time detajpepend- core center, as schematically shown in Fig. 3. In order to
ing on the sign of the pulse the total illumination intensity is describe the displacement of the spiral core, we introduce
increasedpositive pulsg or decrease¢hegative pulsewith ~ another polar coordinate systdim, R) centered at the mea-
respect to the background level. suring point(see Fig. 3. The distance to the core center

In Fig. 1, a number of trajectories of a spiral wave tip areand the polar angle; will specify the location of the core
shown that represent experimental observations performgdst before the pulseis applied. In addition, angle; deter-
with different time delays in the feedback loop. For anymines the location of the spiral tip at the same instant on its
value of r several possible values of the orbit radRisexist. ~ circular pathway around the core center. This angle is
The radius depends on the pulse sigh values given by counted from the line connecting the core center and the
diamonds and circlesHowever, even for a fixed pulse sign measuring point. The induced displacement occurs in a di-
(say, a negative oneorbits with different radii were found
depending on the initial distance between the spiral core and
the measuring point. In order to reach an orbit with a larger
radius, this distance should be longer and lie within the cor-
responding basin of attraction. An increaserakesults in a
shrinking of the orbit radius, as reported ear(i®r11,15.

In the right upper corner of the Fig. 1 one can see strong
deviations from a circular pathway. Small deviations of this
kind have been already noticed in the experiments with the
snail-shaped driff11]. The results shown in Fig. 1 demon-
strate that these deviations are reproducible and can be rather
pronounced. They appear if the time delay in the feedback
loop and/or the orbit radius become sufficiently large.

Ill. KINEMATICAL MODEL OF THE SPIRAL CORE
DYNAMICS

We d | imolified d ioti f th iral FIG. 3. Shift of the spiral wave core due to one pulse in a
€ cdevelop a simplimed descripton of the spiral wave periodic sequence. The contour lifdotted of a spiral wave is

dynamics U”P'er One'Chamel feedback as_sumlng that the U8Rown at the instant, when its front passes through the measuring
perturbed spiral rotates rigidly around a circular core with ayqint (cross. The thin looped line represents a part of the wave tip
constant angular velocity,. The shape of its front can be trajectory observed withr=T,. Thick segments indicate applica-
specified in a polar coordinate systefa, r) with origin at  tjon of light pulses. Locations of the core center just before the (

the core center by a functiod =6 (r), where© =0 corre-  —1)th andith pulse are shown as full circles. The core center after
sponds to the spiral wave tip. An example of this functionthe ith pulse is shown as an open circle. Scale bar: 1 rffor
obtained in our experiments is shown in Fig. 2. details, see text.
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rection given by the angle; measured with respect to the ai=womr—O(R{_}). (5)
same line. The angle; depends, of course, on the orienta-
tion of the rotating spiral wave given by the angleand can  Now the map(1), (2), (5) describing the dynamics @&; can
be expressed as be considered independently of E@) that specifiesy; .
This map has a number of equilibrium poirRg that do not
Yi=ait i, @ depend on the valueand should satisfy the following equa-

. . tion:
where the angle) is a constant that depends on the distur- °

bance applied to the systel]. h

If the absolute value of the induced displacemertt, ithe >R, COSYs- (6)
next location of the core is given HyL5] s
Ri2+1= R2+h2—2R.h cog 7)), 2) E_ach eqyilibrium point corresponds_ toa ci'rcular orbit of ra-
diusRq, if the whole mapg1)—(3), (5) is considered, because
@i+ 1= @ —arcsifi (h/R; ,1)sin()]. 3) the angleg; grows permanently with a constant velocity,

determined by Eq(3). Substituting Egs(1) and(5) into Eq.
These equations are a direct consequence of the cositt@), the relation between the radi of the attractor orbit
theorem-applied to the triangle with sidBs, h, R, ;. and the time delay can be expressed @%1,19
If a pulse is applied just at the moment when the spiral

front passes through the measuring point, the equatjen 7 _ O(Ry—arccoh/(2Ry)] - ¢+m

— 7
—O(R;) is valid[15] that follows from the definition of the To 2m ’ 0
function©®(R;). In the more general case of an arbitrary time
delay the expression fat; should be written as or
ai=—G(Ri,k)-kwor—kﬁa—((pi—goi,k). (4) T e(Rs)+arCC0$h/(2Rs)]_(//
0

Herek=[7/Ty] is the largest integer smaller tha#T, and

is equal to the number of full rotations made by the spiralwith m denoting a positive integer.

wave during the delay time. This integer is as well the num-  These expressions provide a quantitative estimate of the
ber of light pulses that have been applied to the system dugttractor radiusRs as a function of the delay in the feed-

ing the time intervalr. For k=0, Eq. (4) is identical to the  pack loop, if the parametets, , and the©(r) are deter-
expression for short [15]. The more complicated situation mined experimentallyj11,15. In order to clarify the main

for k=1 is illustrated in Fig. 3for the particular choicer  features of the functiofRy(7) let us take into account that

=To). During the trajectory loop numbered-1) the wave  h/(2R,)<1 and assume an Archimedian shape of the spiral
front passes through the measuring point at the moment,
when the angler is equal to— O (R;_;). The new light pulse O(r)=0y—27r/\g, 9
is not immediately generated, but with a time detaguring
which the spiral continues to rotate with the angular velocitywhich is a linear approximation of the functio@(r) for
wo. While the anglea increases to-O(R;_1) +wgr, an  larger (see Fig. 2 Then Eq.(7) can be written as
intermediate pulse is applied to the medium, as can be seen
in Fig. 3. Generally speaking, the light pulses applied during Rs Roo 7
. ] i ) —=———4m, (10

the time intervalr can change the rotation velociéy, of the No Mo To
unperturbed spiral. The effect of this perturbation has to be
included in our consideration as a correction tef(more  whereR, is the attractor radius corresponding#e 0 and
generallykSa, if k#1). The last term in Eq(4) appears due m=0 in Eq. (7). Under the same assumptions E8). reads
to the fact, that the angle is counted from the radial direc-
tion ¢;_, for the (i—1)th loop, while for theith loop the Rs Rop 7
angle is counted frong; . N Mo To +0.5+m. 1D

It is not difficult to generalize the above consideration
carried out fork=1 in order to analyze the case of an arbi- Thus, for a fixedm the resonance attract® is a decreasing
trary k. This generalization leads to E@). function of the time delay as shown in Fig. 4. On the other

The valuedh, ¢, éa, and functionO (r) can be measured hand, for each value of there are several possible attractor
experimentally. After this the syste(t)—(4) is complete and radii corresponding to differemh. These results are both in
describes the dynamics of the spiral core. agreement with the experimental observati@fs Fig. 1). It

In order to simplify the analysis of syste(t)—(4) let us is important to point out that, if dimensionless coordinates
assume that an applied light pulse changes the average roig~/T,,Rs/\) are used, the entire structure of the resonance
tion velocity only by a small amourde<<1. Moreover, Fig. attractor shown in Fig. 4 is determined by only one param-
3 shows thatp; 1 — ¢j=h/R; . Usually the ratidh/R; is very  eterRqg/\g. This parameter depends on the characteristics
small, e.g., for all orbits shown in Fig. h<R; holds. Hence and of the induced shift and can be estimated from &9.
we can neglect the two last terms in E¢) and write or measured directly.
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FIG. 4. Radius of the resonance attradRarvs time delayr in
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ORi ;1= (1= ul2) SRi+H1— wldéRi_ =0, (12
where
h2

H is a dimensionless shift written as
H=—-h do 14
T a9

r=Rq

for orbits described by Eq7) and as
H=h do 15
e (13

r=R

S

for those described by E@8). Under the assumptiopn<1,
the characteristic equation for the eigenvalues of @®)

the feedback loop. Solid and dashed lines are computed from theeads

Egs.(10) and(11), respectively, withRyy/\ o= 0.6. Arrows indicate

directions of evolution oR; within the basins of attracting orbits

(solid) separated by unstable orbitdashegl Within the basin of
attractionk=[ 7y /Tg] remains constant.

IV. LINEAR STABILITY ANALYSIS

The stability of the orbits specified by EqS) and(8) is
determined by the evolution of a small deviatiéR; near an

AL \k+H=0. (16)

An equilibrium point of the discrete mafl), (2), (5) is
stable under the conditiol\|<1. Generally speaking, the
characteristic equatiofil6) hask+1 roots, which can be
found numerically for a giverH. Figure 5 shows two ex-
amples of the displacement of the roots on the complex plane
computed as a function dfi. For H=0 one root is always
located at\ =1, all others lie aik=0 [Fig. 5@ and 3b)].

equilibrium point, which obeys the following equation de- \yjiih growing H the roots move through the complex plane

rived from the map1), (2), (5),

and cross the unit circle, which corresponds to the Neimark

+

FIG. 5. Absolute values and locations of the
roots of characteristic equatidii6) on the com-
plex plane vs the dimensionless shifttomputed

numerically fork=1 [(a) and (b)] and fork=4
[(c) and(d)].

0.0 L -2 . .
0 1

2 3 -2 -1

0
Re[A],-,

1 2

026206-4



INSTABILITIES OF THE RESONANCE ATTRACT® . . . PHYSICAL REVIEW E 65 026206

bifurcation[17]. A sequence of Neimark bifurcations can be 20
observed only in the map witk= 3 [cf. Figs. §c) and §d)], r
since two complex conjugated roots are involved in each of
such a bifurcation. r

Let us determine the critical valués; of the dimension- r
less shiftH corresponding to the Neimark bifurcation. Since T 1.0

1.5

at the bifurcation poinfx|=1 is valid, we can write - stable
i 0.5k
A=cosB+ising, a7 :
where the value8 is an unknown. Then Eq16) can be ool

expressed as a system of two equationsHgrand 8

sin(k+1)5—sinks=0, (18) FIG. 6. Stability diagram for the mafl), (2), (5). Solids show
the bifurcation boundaries on th&,H) plane computed from Eq.
cogk+1)B—coskB+H =0, (19 (23 with 1=0, 1, 2. Arrows illustrate the critical valuk, for a
given dimensionless shifd =0.38.
which can be easily transformed to
These orbitgspecified by Eqs(7) or (10)] are stable, iH
2 0052k+ 1 B siné -0 (20) does not exceed a critical vall, corresponding to the first
2 2 7 Neimark bifurcation. The critical value depends on the order
k of the map
2k+1 B
—2sin 5 ,BS|nE+HC:O. (21 o
H.=2 S|r{—2(2k+1) , (29

One possible solution of this system is the case3& 0,

as follows from Eq.(20) with |=0. The corresponding sta-
bility diagram (Fig. 6) clearly shows that for an arbitrarily
chosenH the stability of the equilibrium point is broken, if
the value of k becomes larger than a critical value
>Kk.(H). Hence the attractor orbit cannot be stable, if the
time delay = exceeds a critical value>r.=k.To, even if
the shift H>0 is arbitrarily small. The boundaries with
=1 andl=2 shown in Fig. 7 correspond to higher bifurca-
tions, which occur in the mafl), (2), (5) for larger values of

H and/ork.

B=2mm. (22
Positive values ofH. correspond to the case ¢k
+1)/2]=0. Substituting this condition into E@21) yields

Hc=25ir{

wherel =0,1, . .. is anintegerl <k. SinceH. is an increas-
ing function ofl, the minimal value ofH. found for =0
describes the first Neimark bifurcation of the discrete map
(1), (2), (5). The critical values obtained fdr>0 specify
higher Neimark or flip bifurcations.

Note that for all orbits shown in Fig. 1 the attractor radius
R, is larger tharr . It follows from Fig. 2 that at such large
distances from the core the derivatid®/dr is negative.
Consequently, for orbits described by E8) the dimension-
less shiftH is negative, as follows from Eq(15) with
dO/dr<0. Analysis of Eq(16) shows that aH=0 a cyclic
fold bifurcation takes place and the attractor orbit becomes
unstable forH<0. The unstable orbits play the role of the
separatrices restricting basins of attraction for orbits de-
scribed by Eq(7). Figure 4 illustrates this statement for the
case of an Archimedian shape of the spiral wave. Arrows in
Fig. 4 show directions of variation d®; for arbitrarily cho- FIG. 7. Trajectories of a spiral corolid) computed for the

sen initial distance between the measuring point and the spinap (1)~(3), (5) with ¥=0.157 and®(r) corresponding to an
ral core. These directions corresponds to the performed staychimedian spiral(9) with Ao=50 and ®,=0.64. (8) 7=0, h

m(4l+1)
2(2k+1)

m(41+1)

P 2k+1 (23

bility analysis of the magl), (2), (5), describing evolution

=3, (b) 7=0, h=4, (¢) 7=0, h=5, (d) 7=Ty, h=3, (&) 7

of R; under a fixedr. Dashed lines indicates unstable orbits =2T,, h=3, (f) 7=3T,, h=3. The dashed circle comprises the

described in this case by E@.1). Solid lines specify attract-
ing orbits.

stability domain of radiusR. calculated from Eq.(32) with
Roo/Ng=0.6. Scale bar: 200.
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V. EFFECT OF THE ATTRACTOR SIZE ~ O(Ry . O(Ryo) .
As a consequence of the Neimark bifurcation periodic de- =TT o o

viations from the circular orbit can be expectedit 7. In

fact, such deviations are observed in the experiments with In the special case of an Archimedian spit@), this defi-

substantial delays in the control loop, as presented in Fig. Inition becomes particularly simple,

An important finding here is that the critical value of the time

delay inducing this bifurcation decreases, when the attractor s 7 Rs Rop

radiusR grows. Indeed, under a negative pulse an instability T, T, + No No +0.5. (30

is observed forr=74s andRs=2.0 mm, while for R

=2.8 mm it appears already at=53 s. In order to explain _ . s
this fact, note that, if a spiral core is located at a distaRge -cI:—Qtee (\j/ aéunesth(;k y I[{)z /F;I]g]ngogpgitged Zvﬁhrsrigg)sa{:irg?;nt
1 I\g . .

from the measuring point, it takes sometime for a wave tc{Nithin a basin of attraction and jumps by 1 when crossing the

travel to this distance. This time is a natural property of th?separatrices. Hence, the critical valde, determined from

zpiﬂlaelllén?'isrfr;%u;]eeds:rﬁéer; ;ggﬁ; dconst'giiir:ﬁ'o?m;'?d he stability condition(24) is the same within a given basin
q Y ! etay y of attraction, while particular values efandRg can be dif-
duced in the feedback loop. ferent

Thus we have to take into consideration a “total time On the other hand, in accordance with the defini(8e),

(rj:clj?gs ;2 ;??Eedipt)ter ggtsorolbnO;Purt:IeV\f;metodilgrias?r?Jctthtehis the critical time delayr. depends on the attractor radius, in
N ' y agreement with the experimental observation in Fig. 1.

gﬁge&(ﬁnc% Is to use the functiorr) describing the spiral Within a basin of attraction, wherex /To=k., 7. IS ex-
PEHg. pressed as

0.5T,. (29)

7s=7—0O(Rs)/ wg+ 7. (25 7o R, Rup
T—=kc—)\—+)\——0.5. (32
The term— 0O (Ry)/ w, specifies the time interval that is nec- 0 o 7o
essary for a spiral front to reach a point located at distanc
R, from the spiral core. The integ&r which determines the

order of the map(1)—(4), should be defined now ak

gimilarly, the critical sizeR. of the attractor should depend
on the time delayr and can be specified as

=[7s/Tq].
The unknown constant, in Eq. (25) can be determined &:k _ l+ @_ 05. (32)
from the following consideration. Note that there is a rela- Ao ¢ Too Ao

tionship (7) between the attractor radiu’s and the time
delay 7. Substituting Eq.7) into Eq. (25 and taking into These expressions fat, andR. are illustrated in Fig. 7,

account thah/(2R,) <1 vyields where the trajectories of the spiral core center for the map
(1)—(3), (5) are computed. For these computations we used
w2+ i Tp=6.9, \y=50, #=0.157, and assumed that the spiral
Ts=MTo— oo +70. (26)  shape is Archimedian, henc®/dr=—27/\ o= —0.126.

Figure Ta) shows four different trajectories correspond-
ing to different initial conditions. In all cases the core center
is rotating around the measuring point in the counterclock-
wise direction. The orbits closest to the measuring p@ait
cated at the symmetry centestarted atR,=Ryy and ¢g
L 0. The other orbits started at,=0 andRy=Rg+ N\,
where the integen is the number of the orbit counted from
the smallest one. These trajectories are computed-$ab,

. w2~ l/f+ 27) while the total delay timers should be computed in accor-
 wp 70- dance with Eq.(30) and will be proportional to the orbit
numbern, 7s=(n+0.5)T,. Consequently, the value df

At the separatrix the total delay time should be equal to =[7s/To] is simply equal to the orbit number. The compu-
T,, since then it will separate two regions with=0 andk  tations were performed with=3 (H=0.38). In accordance

Thus, the total time delays remains constant for all attrac-
tors described by Eq.7) with a fixedm. Similarly, s re-
mains constant on a separat(® between the two neighbor-
ing attractors. For instance, at the separatrix betwee
attractors withm=0 andm=1 we get

75

=1. This condition is fulfilled if with Eq. (24) one expects for this value &f that orbits with
k=4 are unstablgsee also Fig. 6 The four trajectories
- 12— O(Ryp) shown in Fig. Ta) correspond to the valuds=0,1,2,3 and
04 —05+ oo’ (28)  are stable. Thus, there is a stability domain centered at the
To 2m 2m measuring point. The dashed curve in Figa)7shows the

boundary of this domain with radiuR. calculated from Eq.
Finally, expressior{25) determining the total time delay for (32) with Ryy,=0.6. Figures ) and 7c) shows the trajec-
an arbitrary spiral shap®(r) is written as tories computed for the same initial conditions, but for
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o=kl (33)

The critical values oh are computed using Eq$§24) and
(14) with dO/dr=—2m/N\y=—3.3mm %, which corre-
sponds to the observed shape of the spiral front shown in
Fig. 2.

The theoretically determined boundary is in good quanti-
tative agreement with the experimental observation of stable
and unstable attractor orbits. Indeed, all stable trajectories lie

. . . , below the instability boundary. For several experiments,
150 200 250 300 however, an instability appeared earlier, i.e., below the theo-
T(s) retically predicted bifurcation line. This indicates that our

FIG. 8. Trajectories of the spiral tip observed for different time Model is an approximatiofa good ongderived under sev-
delay 7 and shifth induced by light pulses of different intensities. €ral simplifying assumptions and cannot be absolute.
The shifts marked by long bars on theaxis correspond to the
following pulse amplitude#: —0.2, —0.4, —0.6, —0.8 W/n? with
pulse duration 5 ¢from bottom to top, and A= —0.8 W/n? with VIl. CONCLUSION
pulse duratia 6 s for the upper bar. The boundary of the Neimark
bifurcation computed according to E®3) is shown as a solid line.

0.04.E.

o 06
0075

In summary, the systematic study of the spiral wave dy-
namics under a one-channel feedback control demonstrates
an unexpectedly rich variety of attractor trajectories observed
for a long time delay. A modified theory of the spiral core
dynamics has been developed that reduces the observed be-
havior to an iterative map, the order of which depends on the
time delay. In the framework of this model the observed
deviations from the circular shape of core trajectories are
were performed for fixedH=0.38. If 7=T,, the stability found to be a consequence of the Neimark bifurcation. A

domain computed with Eq:32) is so small, that the orbit linear stability analysis yields an analytical expression for
with k=3 becomes unstabl[&ig. 7(d)]. Further growth ofr  the instability boundaries. The main qualitative result of the
results in a destabilization of the orbits witk2 [Fig. 7(e)] ~ Study is that for a given intensity of the light pulse the sta-
andk=1 [Fig. 7(f)]. bility of the resonance attractor is determined by the total
This shows that computations with the discrete nfigp- ~ delay timers that depends on the time delayn the feed-
(3), (5) are in good agreement with the analytical estimatedack loop and on the attractor sigg [see definition(29)].
(24) and (32. These computations illustrate also that theThe resonance attractor becomes unstable; Iff, exceeds
attractor of larger size becomes unstable for shorter time ded critical valuek. (e.g., see Figs. 6 and).7These model

lay in qualitative agreement with the experimental datapredictions are in quantitative agreement with both numeri-
shown in Fig. 1. cal computations of the map and with experimental observa-

tions as shown in Fig. 8.
Spiral wave dynamics under a long-delayed control con-
VI. EXPERIMENTAL STUDY OF THE STABILITY stitutes as a broad and prospective field for both theoretical
BOUNDARY and experimental studies. From a theoretical point of view

An experimental study has been performed with the goai_he resonance attractor represents a natural example of a non-
to allow a direct comparison between the theoretical prediclinear dynamical system with multiple steady states and a
tions and the measurements. In F8ga number of different cascade of bifurcations. Having in mind such an important
trajectories are shown that correspond to the experimem%OP”Cﬁtion as thg defibrilla_tion of cardiac tissue, an investi-
carried out with different time delay and at different inten-  9ation of the basic properties of the long-delayed control of
sities of the light pulse. The increase of pulse intensity reSPiral waves remains a most interesting challenge for future
sults in a larger shifh specified as the ordinate of Fig. 8. As Work.

a qualitative result in this#,h) coordinate system one sees

that the attractor trajectory becomes unstable; @nd/orh

are sufficiently large. To perform a quantitative comparison ACKNOWLEDGMENTS

with the model results, the boundary of the Neimark bifur-

cation is added to Fig. &f. Fig. 6). Here the critical values 0O.K. thanks the Deutscher Akademischer Austauschdienst
of the time delayr. are computed using Eq31) with R;  (DAAD) and Research Program in Chemistry funded by the
=Ryt 0.5\ yielding Royal Thai Government for financial support.

H=0.5 andH =0.63, respectively. In the first cakg=3 and

in the second onk.=2. The size of the stability domaiR,

becomes progressively smaller. The orbit wikth 3 loses its

stability first [Fig. 7(b)], and subsequently the two orbits

with k=3 andk=2 become unstablg-ig. 7(c)].
Schemegd)—(f) of Fig. 7 illustrate the effect of the time

delay 7 on the orbit stability. All corresponding computations
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